

INSTITUTE - UIE

Bachelor of Engineering (Computer Science & Engineering) Subject Name : CALCULUS & VECTOR SPACES Subject Code : 20SMT-175 BE :CSE(All IT branches)

DISCOVER LEARN EMPOWER

Introduction to Inner Product Spaces

Course Outcomes

• Course prerequisites

- Ø Basic Knowledge of Sets.
- \triangleright Basic Knowledge of binary operations.
- \triangleright Basic Knowledge of functions. $\overline{\mathcal{A}}$
	- Ø Basic Knowledge of vectors.

Topic Outcomes

- Students will able to understand basic concept of inner product spaces
- Students will able to understand basic concept orthogonal and orthogonal sets.
- Students now able to apply Gram-Schmidt Orthogonalization Process for orthonormal basis.

A vector space V over F is called an inner product space if there is a function $f: V \times V \longrightarrow F$ satisfying the following conditions:

For
$$
u, v, w \in V; \alpha, \beta \in F
$$

- (i) $f(u,v) = \overline{f(v,u)}$
- (ii) $f(u, u) \ge 0$ and $f(u, u) = 0 \Leftrightarrow u = 0$
- (iii) $f(\alpha u + \beta v, w) = \alpha f(u, w) + \beta f(v, w)$

 $f(u, v)$ is generally denoted by any one of the following symbols

 $(u, v); u.v; < u|v>$

Results:

 (2)

(1) In an inner product space V; for all $u, v, w, x \in V; \alpha, \beta, \gamma, \delta \in F$

(i)
$$
a|\alpha v + \beta w> = \overline{\alpha} v|v> + \overline{\beta} u|w>
$$

\n(ii) $<\alpha u + \beta v|w + \delta x> = \alpha v < u|v> + \alpha \overline{\delta} + \beta v < v|w> + \beta \overline{\delta} < v|x>$
\n(iii) $<0|v>=u|0>=0$
\n(iv) $u|v=0 \forall v \in V \Rightarrow u = 0 \text{ and } u|v> = 0 \forall u \in V \Rightarrow v = 0$
\n(v) $||\alpha u|| = |\alpha|||u||$
\nFor all $u, v \in V, |u|v> \le ||u|| \cdot ||v||$

(3) Every inner product space is a metric space.

Examples:

• The space of *n*-dimensional arrays with real coefficients is an inner product space. If $v=(v_1,...,v_n)$ and $w=(w_1,...,w_n)$ then:

 $\langle v, w \rangle = v_1 w_1 + \ldots + v_n w_n$

• If *M* is a symmetric matrix $(M=M^t)$ whose eigen-values are all positive, then the space of *n*-dimensional arrays with real coefficients is an inner product space. If $v=(v_1,\ldots,v_n)$ and $w=(w_1,\ldots,w_n)$ then: $\langle v, w \rangle_M = vMv^t$

Examples:

• The space of *m* x *n* matrices with real coefficients is an inner product space. If *M* and *N* are two *m* x *n* matrices then:

 $\langle M, N \rangle$ =Trace($M^t N$)

• The spaces of real-valued functions defined in 1D, 2D, 3D,... are real inner product space. If *f* and *g* are two functions in 1D, then:

$$
\langle f,g\rangle=\int_{-\infty}^{\infty}f(x)g(x)dx
$$

• The spaces of real-valued functions defined on the circle, disk, sphere, ball,… are real inner product spaces. If *f* and *g* are two functions defined on the

$$
\langle f,g\rangle=\int_0^{2\pi}f(\theta)g(\theta)d\theta
$$

Orthogonal / Unitary Operators

If *V* is a real / complex inner product space, then a linear map $A:V\rightarrow V$ is orthogonal / unitary if it preserves the inner product as $\langle v, w \rangle = \langle Av, Aw \rangle$ for all *v*, $w \in V$.

Examples: If *V* is the space of real, two-dimensional, vectors and *A* is any rotation or reflection, then *A* is orthogonal. $A(v_1)$

Orthogonal vector:

$u \in V$ is said to be orthogonal to $v \in V$ if $\langle u | v \rangle \geq 0$.

Orthogonal complement:

If W is a subspace of V, then an orthogonal complement of W (denoted by W^{\perp} defined by $\{u \in V : \langle u | v \rangle \geq 0 \ \forall \ w \in W\}$

Note: $W^{\perp^{\perp}} = W$.

Orthogonal set:

A subset X of V is said to be an orthogonal set if for any $x, y \in X$, $\langle x | y \rangle =$ 0 whenever $x \neq y$.

Orthonormal set:

A subset X of V is called an orthonormal set if

(i) $||x|| = 1 \forall x \in X$

(ii) For any $x, y \in X$, $\langle x | y \rangle = 0$ whenever $x \neq y$.

Results:

- Any orthogonal set of nonzero vectors is linearly independent.
- **(Gram-Schmidt Orthogonalization Process)** Every finite dimensional inner product space has an orthonormal basis.
- For each subspace W of a finite-dimensional inner product space V**,**

 $V = W \oplus W^{\perp}$

References

Reference Books

- Elements of Discrete Mathematics, (Second Edition) C. L. Liu, McGraw Hill, New Delhi, 2017
- Graph Theory with Applications, J. A. Bondy and U. S. R. Murty, Macmillan Press, London.
- Topics in Algebra, I. N. Herstein, John Wiley and Sons. Digital Logic & amp; Computer Design, M. Morris Mano, Pearson.

Online Video Sites:

- 1. NPTEL
- 2. Coursera
- 3. Unacademy

藥